

August 2020

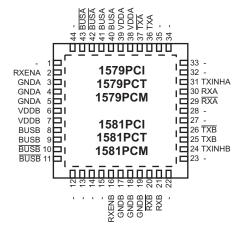
HI-1579, HI-1581

MIL-STD-1553 / 1760 3.3V Monolithic Dual Transceivers

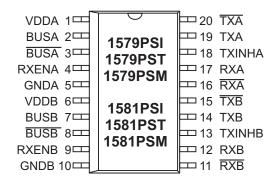
DESCRIPTION

The HI-1579 and HI-1581 are low power CMOS dual transceivers designed to meet the requirements of the MIL-STD-1553 and MIL-STD-1760 specifications.

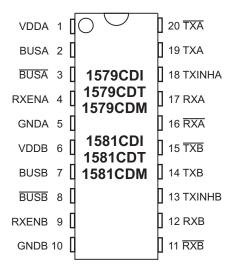
The transmitter section of each bus takes complementary CMOS / TTL Manchester II bi-phase data and converts it to differential voltages suitable for driving the bus isolation transformer. Separate transmitter inhibit control signals are provided for each transmitter.


The receiver section of each bus converts the 1553 bus biphase data to complementary CMOS / TTL data suitable for input to a Manchester decoder. Each receiver has a separate enable input, which forces the receiver outputs to logic "0" (HI-1579) or logic 1 (HI-1581).

To minimize the package size for this function, the transmitter outputs are internally connected to the receiver inputs, so that only two pins are required for connection to each coupling transformer.


FEATURES

- Compliant to MIL-STD-1553A and B, MIL-STD-1760 and ARINC 708A
- 3.3V single supply operation
- Smallest footprint available in 7mm x 7mm 44 pin plastic chip-scale package (QFN)
- Industrial and extended temperature ranges
- Industry standard pin configurations


PIN CONFIGURATIONS

44 Pin Plastic 7mm x 7mm Chip-scale package

20 Pin Plastic ESOIC - WB package

20 Pin Ceramic DIP package

PIN DESCRIPTIONS

(DIP & SOIC)	PIN (QFN)	SYMBOL	FUNCTION	DESCRIPTION
1	38, 39	VDDA	power supply	+3.3 volt power for transceiver A
2	40, 41	BUSA	analog	MIL-STD-1533 bus driver A, positive signal
3	42, 43	BUSA	analog	MIL-STD-1553 bus driver A, negative signal
4	2	RXENA	digital input	Receiver A enable. If low, forces RXA and RXA low
5	3, 4, 5	GNDA	power supply	Ground for transceiver A
6	6, 7	VDDB	power supply	+3.3 volt power for transceiver B
7	8, 9	BUSB	analog	MIL-STD-1533 bus driver B, positive signal
8	10, 11	BUSB	analog	MIL-STD-1553 bus driver B, negative signal
9	16	RXENB	digital input	Receiver B enable. If low, forces RXB and $\overline{\text{RXB}}$ low
10	17, 18, 19	GNDB	power supply	Ground for transceiver B
11	20	RXB	digital output	Receiver B output, inverted
12	21	RXB	digital output	Receiver B output, non-inverted
13	24	TXINHB	digital input	Transmit inhibit, bus B. If high BUSB, BUSB disabled
14	25	TXB	digital input	Transmitter B digital data input, non-inverted
15	26	TXB	digital input	Transmitter B digital data input, inverted
16	29	RXA	digital output	Receiver A output, inverted
17	30	RXA	digital output	Receiver A output, non-inverted
18	31	TXINHA	digital input	Transmit inhibit, bus A. If high BUSA, BUSA disabled
19	36	TXA	digital input	Transmitter A digital data input, non-inverted
20	37	TXA	digital input	Transmitter A digital data input, inverted
	1, 12, 13, 14, 15	No		
-	22, 23, 27, 28, 32	Connect	-	-
	33, 34, 35, 44			

FUNCTIONAL DESCRIPTION

The HI-1579 family of dual data bus transceivers contains differential voltage source drivers and differential receivers. It is intended for applications using a MIL-STD-1553 A/B data bus. The device produces a trapezoidal output waveform during transmission.

TRANSMITTER

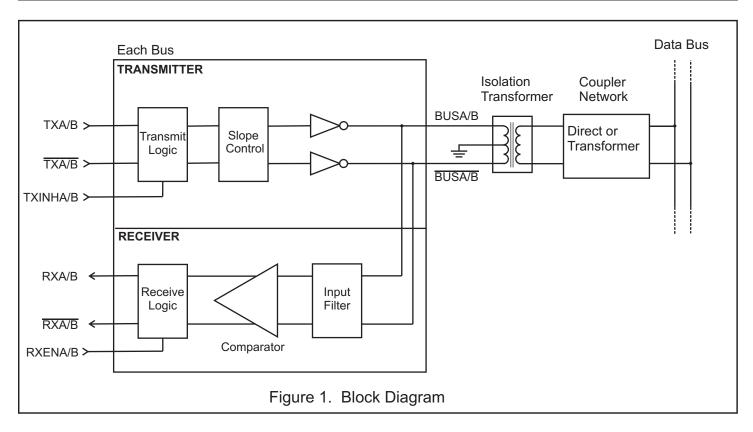
Data input to the device's transmitter section is from the complementary CMOS inputs TXA/B and $\overline{TXA/B}$. The transmitter accepts Manchester II bi-phase data and converts it to differential voltages on BUSA/B and $\overline{BUSA/B}$. The transceiver outputs are either direct- or transformer-coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of 7.5 volts peak to peak.

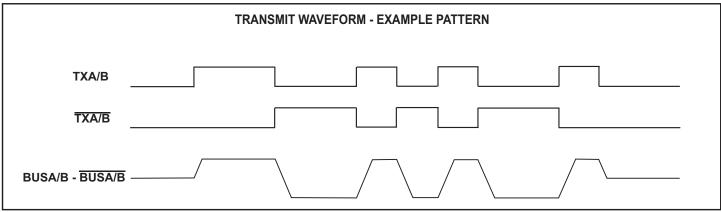
The transmitter is automatically inhibited and placed in the high impedance state when both TXA/B and $\overline{TXA}/\overline{B}$ are driven with the same logic state. A logic "1" applied to the TXINHA/B input forces the transmitter to the high impedance state, regardless of the state of TXA/B and $\overline{TXA}/\overline{B}$.

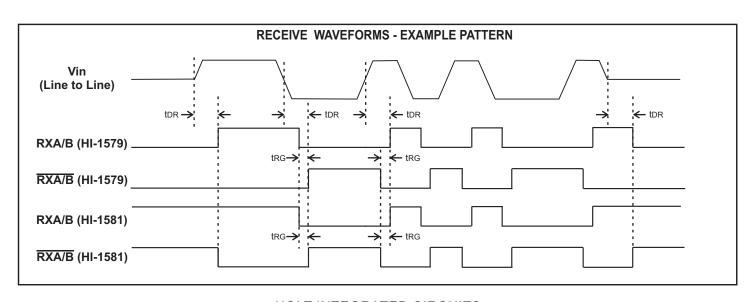
RECEIVER

The receiver accepts bi-phase differential data from the MIL-STD-1553 bus through the same direct- or transformer- coupled interface as the transmitter. The re-

ceiver's differential input stage drives a filter and threshold comparator to produce CMOS data at the RXA/B and $\overline{\text{RXA/B}}$ output pins. When the MIL-STD-1553 bus is idle and RXENA or RXENB are high, RXA/B will be logic "0" on HI-1579 and logic "1" on HI-1581.


The receiver outputs are forced to the bus idle state (logic "0" for HI-1579 or logic "1" for HI-1581) when the RXENA or RXENB is low.


MIL-STD-1553 BUS INTERFACE


A direct-coupled interface (see Figure 2) uses a 1:2.5 ratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus. The primary center-tap of the isolation transformer must be connected to GND.

In a transformer-coupled interface (see Figure 2), the transceiver is also connected to a 1:2.5 isolation transformer which in turn is connected to a 1:1.4 coupling transformer. The transformer coupled method also requires two coupling resistors equal to 75% of the bus characteristic impedance (Zo) between the coupling transformer and the bus.

Figure 3 and Figure 4 show test circuits for measuring electrical characteristics of both direct- and transformer-coupled interfaces respectively. (See electrical characteristics on the following pages).

ABSOLUTE MAXIMUM RATINGS

Supply voltage (VDD)	-0.3 V to +5 V	
Logic input voltage range	-0.3 V dc to +3.6 V	
Receiver differential voltage	50 Vp-p	
Driver peak output current	+1.0 A	
Reflow Solder Temperature	260°C	
Junction Temperature	175°C	
Storage Temperature	-65°C to +150°C	

RECOMMENDED OPERATING CONDITIONS

Supply Voltage
VDD3.3V ±5%
Temperature Range
Industrial40°C to +85°C Hi-Temp55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

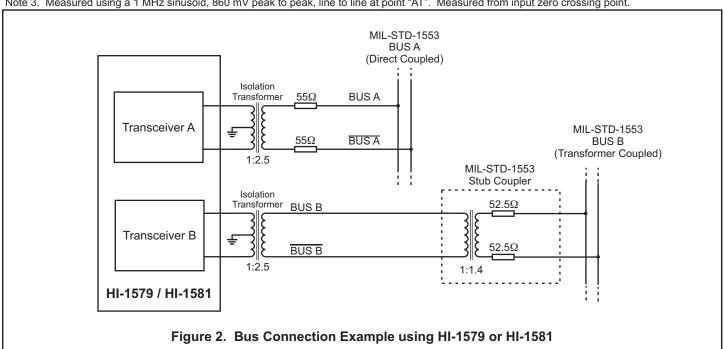
DC ELECTRICAL CHARACTERISTICS

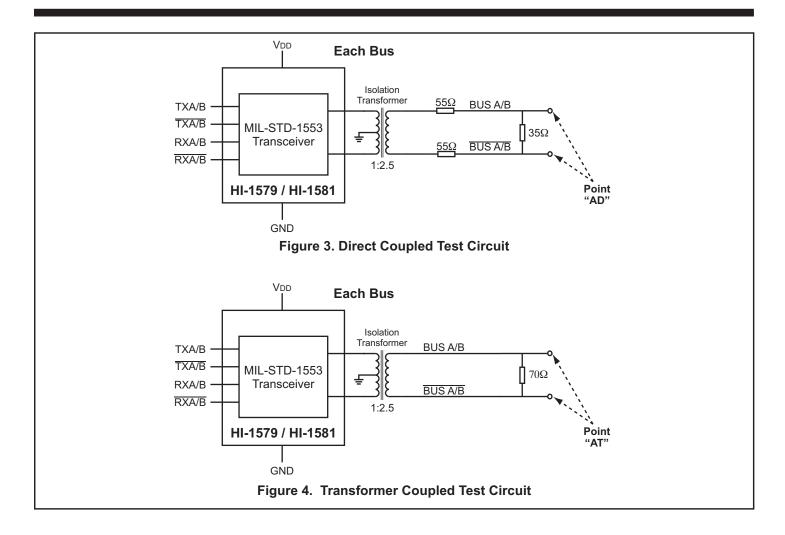
VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Voltage	Vdd		3.15	3.30	3.45	V
Total Supply Current	Icc1	Not Transmitting		10	17	mA
	Icc2	Transmit one bus @ 50% duty cycle		290	320	mA
	Icc3	Transmit one bus @ 100% duty cycle		590	650	mA
Power Dissipation	PD ₁	Not Transmitting		0.033	0.06	W
	PD ²	Transmit one bus @ 100% duty cycle		0.86	1.1	W
Min. Input Voltage (HI)	VIH	Digital inputs	2.0			V
Max. Input Voltage (LO)	VIL	Digital inputs			30%	VDD
Min. Input Current (HI)	lін	Digital inputs			20	μA
Max. Input Current (LO)	lıL	Digital inputs	-20			μA
Min. Output Voltage (HI)	Voн	louт = -1.0mA, Digital outputs	90%			VDD
Max. Output Voltage (LO)	Vol	Iουτ = 1.0mA, Digital outputs			10%	VDD
RECEIVER (Measured at Point "AD" in F	igure 3 unles	s otherwise specified)				
Input resistance	Rin	Differential (at chip pins)	2			Kohm
Input capacitance	CIN	Differential			5	pF
Common mode rejection ratio	CMRR		40			dB
Input Level	Vin	Differential			9	Vp-p
Input common mode voltage	VICM		-10.0		10.0	V-pk
Threshold Voltage - Direct-coupled Detect	VTHD	1 MHz Sine Wave Measured at Point "Ap" in Figure 3 RXA/B, RXA/B pulse width >70 ns	1.15			Vp-p
No Detect	VTHND	No pulse at RXA/B, RXA/B			0.28	Vp-p
Theshold Voltage - Transformer-coupled Detect	VTHD	1 MHz Sine Wave Measured at Point "A _T " in Figure 4 RXA/B, RXA/B pulse width >70 ns	0.86			Vp-p
No Detect	VTHND	No pulse at RXA/B, RXA/B			0.20	Vp-p

DC ELECTRICAL CHARACTERISTICS (cont.)

VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).


	PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
TRANSMITTER	(Measured at Point "AD" in Fi	gure 3 unless	otherwise specified)				
Output Voltage	Direct coupled	Vouт	35 ohm load (Measured at Point "Ap" in Figure 3)	6.1		9.0	Vp-p
	Transformer coupled	Vouт	70 ohm load (Measured at Point "At" in Figure 4)	20.0		27.0	Vp-p
Output Noise		Von	Differential, inhibited			10.0	mVp-p
Output Dynamic Offset Voltage Direct coupled		Vdyn	35 ohm load (Measured at Point "Ap" in Figure 3)	-90		90	mV
Transformer coupled		VDYN	70 ohm load (Measured at Point "Ατ" in Figure 4)	-250		250	mV
Output Capacitance		Соит	1 MHz sine wave			15	pF


AC ELECTRICAL CHARACTERISTICS

VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER SYMBOL		TEST CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER (Measured	at Point "Ат"	in Figure 4)				
Receiver Delay	tor	From input zero crossing to RXA/B or $\overline{\text{RXA/B}}$			450	ns
					Note 3	
Receiver gap time	trg	Spacing between RXA/B and RXA/B pulses	90		365	ns
			Note 1		Note 2	
Receiver Enable Delay	tren	From RXENA/B rising or falling edge to			40	ns
		RXA/B or RXA/B			40	113
TRANSMITTER (Measured	at Point "AD"	in Figure 3)				
Driver Delay	tot	TXA/B, TXA/B to BUSA/B, BUSA/B			150	ns
Rise time	tr	35 ohm load	100		300	ns
Fall Time	tf	35 ohm load	100		300	ns
Inhibit Delay	tDI-H	Inhibited output			100	ns
	tDI-L	Active output			150	ns

- Note 1. Measured using a 1 MHz sinusoid, 20 V peak to peak, line to line at point "AT" (Guaranteed but not tested).
- Note 2. Measured using a 1 MHz sinusoid, 860 mV peak to peak, line to line at point "AT" (100% tested).
- Note 3. Measured using a 1 MHz sinusoid, 860 mV peak to peak, line to line at point "AT". Measured from input zero crossing point.

HEAT SINK ESOIC & CHIP-SCALE PACKAGES

The HI-1579PSI/T/M and HI-1581PSI/T/M use a 20-pin thermally enhanced SOIC package. The HI-1579PCI/T/M and HI-1581PCI/T/M use a plastic chip-scale package (QFN). These packages include a metal heat sink located on the bottom surface of the device. This heat sink may be soldered down to the printed circuit board for optimum thermal dissipation. The heat sink is electrically isolated and may be soldered to any convenient power or ground plane.

APPLICATIONS NOTE

Holt Applications Note AN-500 provides circuit design notes regarding the use of Holt's family of MIL-STD-1553 transceivers. Layout considerations, as well as recommended interface and protection components are included.

ORDERING INFORMATION

HI - <u>15xx PS x x -xx</u> (Plastic)

PART NUMBER	PACKING
Blank	Tubes
-TR	Tape and Reel (500 pieces/reel)

PART NUMBER	LEAD FINISH
Blank	Tin / Lead (Sn / Pb) Solder
F	100% Matte Tin (Pb-free RoHS compliant)

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN
Ι	-40°C TO +85°C	I	No
T -55°C TO +125°C		Т	No
М	-55°C TO +125°C	М	Yes

	PACKAGE DESCRIPTION
PS	20 PIN PLASTIC ESOIC, Thermally Enhanced Wide SOIC w/Heat Sink (20HWE)

PART	RXEI	0 = A	RXEN	B = 0	
NUMBER	RXA	RXA	RXB	RXB	
1579	0	0	0	0	
1581	1	1	1	1	

ORDERING INFORMATION

HI - 15xx PC x x -xx (Plastic)

PART NUMBER	PACKING
Blank	Tubes
-TR	Tape and Reel (500 pieces/reel)

PART NUMBER	LEAD FINISH
Blank	NiPdAu
F	NiPdAu (Pb-free RoHS compliant)

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN
I	-40°C TO +85°C	I	No
Т	-55°C TO +125°C	Т	No
М	-55°C TO +125°C	М	Yes

PART NUMBER	PACKAGE DESCRIPTION
PC	44 PIN PLASTIC CHIP-SCALE PACKAGE QFN (44PCS)

PART	RXEI	0 = A	RXENB = 0		
NUMBER	RXA	RXA	RXB	RXB	
1579	0	0	0	0	
1581	1	1	1	1	

HI - 15xxCD x (Ceramic)

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN	LEAD FINISH
I	-40°C TO +85°C	I	No	Gold (Pb-free, RoHS compliant)
Т	-55°C TO +125°C	Т	No	Gold (Pb-free, RoHS compliant)
М	-55°C TO +125°C	М	Yes	Tin / Lead (Sn / Pb) Solder

PART	RXEI	VA = 0	RXENB = 0		PACKAGE
NUMBER	RXA	RXA	RXB	RXB	DESCRIPTION
1579	0	0	0	0	20 PIN CERAMIC SIDE BRAZED DIP (20C)
1581	1	1	1	1	20 PIN CERAMIC SIDE BRAZED DIP (20C)

RECOMMENDED TRANSFORMERS

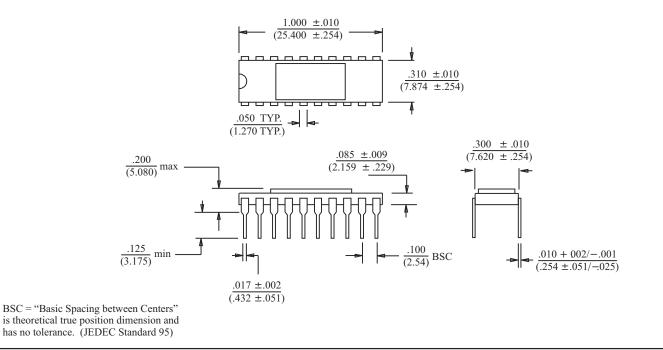
The HI-1579 and HI-1581 transceivers have been characterized for compliance with the electrical requirements of MIL-STD-1553 when used with the following

transformers. Holt recommends Premier Magnetics parts as offering the best combination of electrical performance, low cost and small footprint.

MANUFACTURER	PART NUMBER	APPLICATION	TURNS RATIO	DIMENSIONS
Premier Magnetics	PM-DB2791S	Isolation	Single 1:2.5	.400 x .400 x .185 inches
Premier Magnetics	PM-DB2756	Isolation	Dual 1:2.5	.930 x .575 x .185 inches
Premier Magnetics	PM-DB2702	Stub coupling	1:1.4	.625 x .625 x .250 inches

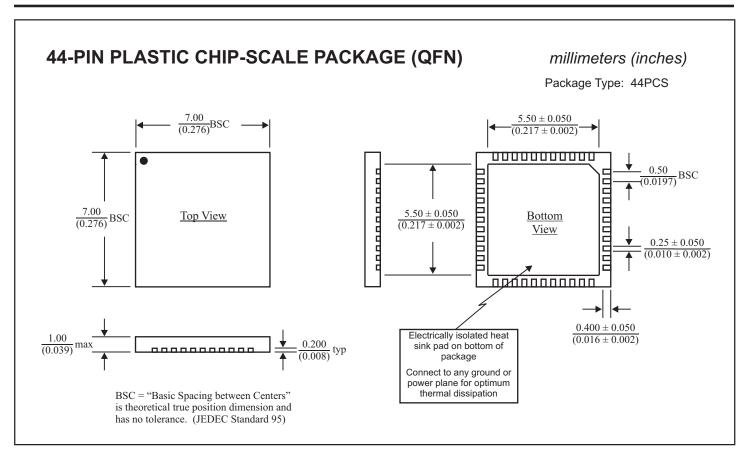
REVISION HISTORY

Document	Rev.	Date	Description of Change
DS1579	F	07/24/09	Correct typographical errors in package dimensions. Clarified available temperature ranges.
	G	10/5/09	Clarified status of RXA/B and $\overline{RXA}/\overline{B}$ pins in bus idle state when RXENA or RXENB are high (logic "1").
			Clarified nomenclature of chip-scale package as QFN. Added 'M' flow option for QFN package ('PCM' package option).
			Updated datasheet to include HI-1581 variant.
	Н	01/26/10	Corrected dynamic current and power dissipation values.
	I	02/01/10	Revised Thermal Characteristic table to correspond to correct dynamic currents and power dissipation values.
	J	08/18/10	Revised DC Electrical Characteristics table to correspond to actual measured values. Revised Bus Connection and Test Circuit Diagrams. Revised SOIC package standoff dimension.
	K	05/23/13	Revised text in functional description to improve clarity. Added more detail to AC timing parameter table. Removed reference to non-preferred transformers Updated package drawings.
	L	05/14/14	Correct typos in Figure references on pages 4 & 5. Update reflow solder temperature. Correct mistake in Figure 2. Update package drawings.
	M	04/09/15	Corrected Figures 2 and 3. Added notes for Receiver Gap Time in AC Characteristics. Other minor clarifications.
	N	01/13/16	Update Pin Descriptions for QFN package. Add Tape and Reel option for plastic packages.
	0	07/29/16	Update "DC Electrical Characteristics" table: change VIH to 2.0V min.
	Р	02/06/17	Remove Thermal Characteristics Table. See website for thermal resistance data. Correct minor typos.
	Q	06/06/17	Update Power Dissipation and Power Supply Current parameters.
	R	11/29/17	Correct typo in DC Electrical Characteristics Table; Vol. incorrectly labeled as VIH.
	S	08/25/2020	Update QFN package lead finish to NiPdAu.


PACKAGE DIMENSIONS

20-PIN PLASTIC SMALL OUTLINE (ESOIC) - WB millimeters (inches) (Wide Body, Thermally Enhanced) Package Type: 20HWE 0.215 ± 0.115 (0.008 ± 0.005) $\frac{12.80}{(0.504)}$ BSC — (0.295 ± 0.015) A A A A A A A A A A A A'A A A A A A'A A $\frac{10.33}{(0.407)}$ BSC $\frac{7.50}{(0.295)}$ BSC 5.335 ± 0.385 **Bottom** Top View (0.210 ± 0.015) <u>View</u> 888888888 **→||**← See Detail A 0.419 ± 0.109 (0.016 ± 0.004) Electrically isolated heat 2.181 ± 0.131 sink pad on bottom of (0.086 ± 0.005) package Connect to any ground or power plane for optimum thermal dissipation 0° to 8° 0.200 ± 0.100 BSC (0.008 ± 0.004) 0.835 ± 0.435 (0.033 ± 0.017) BSC = "Basic Spacing between Centers" Detail A is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)

20-PIN CERAMIC SIDE-BRAZED DIP


inches (millimeters)

Package Type: 20C

PACKAGE DIMENSIONS

